$$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$の導関数

この計算機は、手順を示しながら $$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$ の導関数を求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)$$$ を求めよ。

解答

関数$$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$は、2つの関数$$$f{\left(u \right)} = \tan{\left(u \right)}$$$$$$g{\left(x \right)} = \frac{x}{2} + \frac{\pi}{4}$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。

連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:

$${\color{red}\left(\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)\right)}$$

正接関数の導関数は$$$\frac{d}{du} \left(\tan{\left(u \right)}\right) = \sec^{2}{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right) = {\color{red}\left(\sec^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)$$

元の変数に戻す:

$$\sec^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right) = \sec^{2}{\left({\color{red}\left(\frac{x}{2} + \frac{\pi}{4}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)$$

和/差の導関数は、導関数の和/差である:

$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)\right)} = \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right)}$$

定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = \frac{1}{2}$$$$$$f{\left(x \right)} = x$$$ に対して適用します:

$$\left({\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\left(\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left(\frac{{\color{red}\left(1\right)}}{2} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

定数の導数は$$$0$$$です:

$$\left({\color{red}\left(\frac{d}{dx} \left(\frac{\pi}{4}\right)\right)} + \frac{1}{2}\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(0\right)} + \frac{1}{2}\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

簡単化せよ:

$$\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} = \frac{1}{1 - \sin{\left(x \right)}}$$

したがって、$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(x \right)}}$$$

解答

$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(x \right)}}$$$A


Please try a new game Rotatly