$$$\tan{\left(\frac{x}{2} \right)}$$$の導関数
入力内容
$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right)$$$ を求めよ。
解答
関数$$$\tan{\left(\frac{x}{2} \right)}$$$は、2つの関数$$$f{\left(u \right)} = \tan{\left(u \right)}$$$と$$$g{\left(x \right)} = \frac{x}{2}$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}$$正接関数の導関数は$$$\frac{d}{du} \left(\tan{\left(u \right)}\right) = \sec^{2}{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right) = {\color{red}\left(\sec^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$元の変数に戻す:
$$\sec^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right) = \sec^{2}{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = \frac{1}{2}$$$ と $$$f{\left(x \right)} = x$$$ に対して適用します:
$$\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = \sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{2}$$簡単化せよ:
$$\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} = \frac{1}{\cos{\left(x \right)} + 1}$$したがって、$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} + 1}$$$。
解答
$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} + 1}$$$A