$$$t \left(t - 1\right)$$$の導関数

この計算機は、手順を示しながら $$$t \left(t - 1\right)$$$ の導関数を求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dt} \left(t \left(t - 1\right)\right)$$$ を求めよ。

解答

積の微分法 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$$$$f{\left(t \right)} = t$$$$$$g{\left(t \right)} = t - 1$$$ に適用する:

$${\color{red}\left(\frac{d}{dt} \left(t \left(t - 1\right)\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) \left(t - 1\right) + t \frac{d}{dt} \left(t - 1\right)\right)}$$

$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(1\right)}$$

和/差の導関数は、導関数の和/差である:

$$t {\color{red}\left(\frac{d}{dt} \left(t - 1\right)\right)} + t - 1 = t {\color{red}\left(\frac{d}{dt} \left(t\right) - \frac{d}{dt} \left(1\right)\right)} + t - 1$$

定数の導数は$$$0$$$です:

$$t \left(- {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1 = t \left(- {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1$$

$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t - 1 = t {\color{red}\left(1\right)} + t - 1$$

したがって、$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$

解答

$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$A


Please try a new game Rotatly