$$$\sqrt{x - 1}$$$の導関数
入力内容
$$$\frac{d}{dx} \left(\sqrt{x - 1}\right)$$$ を求めよ。
解答
関数$$$\sqrt{x - 1}$$$は、2つの関数$$$f{\left(u \right)} = \sqrt{u}$$$と$$$g{\left(x \right)} = x - 1$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x - 1}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(x - 1\right)\right)}$$冪法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ を $$$n = \frac{1}{2}$$$ に対して適用する:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(x - 1\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(x - 1\right)$$元の変数に戻す:
$$\frac{\frac{d}{dx} \left(x - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(x - 1\right)}{2 \sqrt{{\color{red}\left(x - 1\right)}}}$$和/差の導関数は、導関数の和/差である:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 1\right)\right)}}{2 \sqrt{x - 1}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{x - 1}}$$定数の導数は$$$0$$$です:
$$\frac{- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)}{2 \sqrt{x - 1}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)}{2 \sqrt{x - 1}}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \sqrt{x - 1}} = \frac{{\color{red}\left(1\right)}}{2 \sqrt{x - 1}}$$したがって、$$$\frac{d}{dx} \left(\sqrt{x - 1}\right) = \frac{1}{2 \sqrt{x - 1}}$$$。
解答
$$$\frac{d}{dx} \left(\sqrt{x - 1}\right) = \frac{1}{2 \sqrt{x - 1}}$$$A