$$$t$$$ に関する $$$\sqrt{\omega} t$$$ の導関数
入力内容
$$$\frac{d}{dt} \left(\sqrt{\omega} t\right)$$$ を求めよ。
解答
定数倍の法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ を $$$c = \sqrt{\omega}$$$ と $$$f{\left(t \right)} = t$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{\omega} t\right)\right)} = {\color{red}\left(\sqrt{\omega} \frac{d}{dt} \left(t\right)\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{\omega} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \sqrt{\omega} {\color{red}\left(1\right)}$$したがって、$$$\frac{d}{dt} \left(\sqrt{\omega} t\right) = \sqrt{\omega}$$$。
解答
$$$\frac{d}{dt} \left(\sqrt{\omega} t\right) = \sqrt{\omega}$$$A
Please try a new game Rotatly