$$$x$$$ に関する $$$\sin{\left(a - x \right)}$$$ の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dx} \left(\sin{\left(a - x \right)}\right)$$$ を求めよ。
解答
関数$$$\sin{\left(a - x \right)}$$$は、2つの関数$$$f{\left(u \right)} = \sin{\left(u \right)}$$$と$$$g{\left(x \right)} = a - x$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(a - x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(a - x\right)\right)}$$正弦関数の導関数は$$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(a - x\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(a - x\right)$$元の変数に戻す:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(a - x\right) = \cos{\left({\color{red}\left(a - x\right)} \right)} \frac{d}{dx} \left(a - x\right)$$和/差の導関数は、導関数の和/差である:
$$\cos{\left(a - x \right)} {\color{red}\left(\frac{d}{dx} \left(a - x\right)\right)} = \cos{\left(a - x \right)} {\color{red}\left(\frac{da}{dx} - \frac{d}{dx} \left(x\right)\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\left(- {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{da}{dx}\right) \cos{\left(a - x \right)} = \left(- {\color{red}\left(1\right)} + \frac{da}{dx}\right) \cos{\left(a - x \right)}$$定数の導数は$$$0$$$です:
$$\left({\color{red}\left(\frac{da}{dx}\right)} - 1\right) \cos{\left(a - x \right)} = \left({\color{red}\left(0\right)} - 1\right) \cos{\left(a - x \right)}$$したがって、$$$\frac{d}{dx} \left(\sin{\left(a - x \right)}\right) = - \cos{\left(a - x \right)}$$$。
解答
$$$\frac{d}{dx} \left(\sin{\left(a - x \right)}\right) = - \cos{\left(a - x \right)}$$$A