$$$x$$$ に関する $$$\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$ の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)$$$ を求めよ。
解答
和/差の導関数は、導関数の和/差である:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) - \frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)}$$定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = \cos{\left(a \right)}$$$ と $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ に対して適用します:
$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - {\color{red}\left(\cos{\left(a \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$正弦関数の導関数は$$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- \cos{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - \cos{\left(a \right)} {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = \sin{\left(a \right)}$$$ と $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ に対して適用します:
$$- \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)\right)} = - \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\sin{\left(a \right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$余弦関数の導関数は$$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$\sin{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} - \cos{\left(a \right)} \cos{\left(x \right)} = \sin{\left(a \right)} {\color{red}\left(- \sin{\left(x \right)}\right)} - \cos{\left(a \right)} \cos{\left(x \right)}$$簡単化せよ:
$$- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)} = - \cos{\left(a - x \right)}$$したがって、$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$。
解答
$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$A