$$$\ln\left(\frac{t}{t + 1}\right)$$$の導関数
入力内容
$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)$$$ を求めよ。
解答
関数$$$\ln\left(\frac{t}{t + 1}\right)$$$は、2つの関数$$$f{\left(u \right)} = \ln\left(u\right)$$$と$$$g{\left(t \right)} = \frac{t}{t + 1}$$$の合成$$$f{\left(g{\left(t \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}$$自然対数の導関数は $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right)$$元の変数に戻す:
$$\frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(\frac{t}{t + 1}\right)}}$$$$$f{\left(t \right)} = t$$$ と $$$g{\left(t \right)} = t + 1$$$ に対して商の微分法則 $$$\frac{d}{dt} \left(\frac{f{\left(t \right)}}{g{\left(t \right)}}\right) = \frac{\frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} - f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)}{g^{2}{\left(t \right)}}$$$ を適用する:
$$\frac{\left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}}{t} = \frac{\left(t + 1\right) {\color{red}\left(\frac{\frac{d}{dt} \left(t\right) \left(t + 1\right) - t \frac{d}{dt} \left(t + 1\right)}{\left(t + 1\right)^{2}}\right)}}{t}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{t \left(t + 1\right)} = \frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(1\right)}}{t \left(t + 1\right)}$$和/差の導関数は、導関数の和/差である:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t + 1\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(1\right)\right)} + t + 1}{t \left(t + 1\right)}$$定数の導数は$$$0$$$です:
$$\frac{- t \left({\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)} = \frac{- t \left({\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(1\right)} + t + 1}{t \left(t + 1\right)}$$したがって、$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$。
解答
$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$A