$$$\ln\left(\cos{\left(x \right)}\right)$$$の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)$$$ を求めよ。
解答
関数$$$\ln\left(\cos{\left(x \right)}\right)$$$は、2つの関数$$$f{\left(u \right)} = \ln\left(u\right)$$$と$$$g{\left(x \right)} = \cos{\left(x \right)}$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$自然対数の導関数は $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$元の変数に戻す:
$$\frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(\cos{\left(x \right)}\right)}}$$余弦関数の導関数は$$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}{\cos{\left(x \right)}} = \frac{{\color{red}\left(- \sin{\left(x \right)}\right)}}{\cos{\left(x \right)}}$$簡単化せよ:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} = - \tan{\left(x \right)}$$したがって、$$$\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)}$$$。
解答
$$$\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)}$$$A