$$$x$$$ に関する $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ の導関数

この計算機は、$$$x$$$ に関する $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ の導関数を、手順を示して求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)$$$ を求めよ。

解答

関数$$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$は、2つの関数$$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = \frac{a^{2}}{x^{2}}$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。

連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}$$

自然対数の導関数は $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)$$

元の変数に戻す:

$$\frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(\frac{a^{2}}{x^{2}}\right)}}$$

定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = a^{2}$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ に対して適用します:

$$\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}}{a^{2}} = \frac{x^{2} {\color{red}\left(a^{2} \frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)}}{a^{2}}$$

冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = -2$$$ に対して適用する:

$$x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)} = x^{2} {\color{red}\left(- \frac{2}{x^{3}}\right)}$$

したがって、$$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$

解答

$$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$A


Please try a new game Rotatly