$$$y$$$ に関する $$$e^{x} + \sin{\left(y z \right)}$$$ の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)$$$ を求めよ。
解答
和/差の導関数は、導関数の和/差である:
$${\color{red}\left(\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(e^{x}\right) + \frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)}$$関数$$$\sin{\left(y z \right)}$$$は、2つの関数$$$f{\left(u \right)} = \sin{\left(u \right)}$$$と$$$g{\left(y \right)} = y z$$$の合成$$$f{\left(g{\left(y \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$正弦関数の導関数は$$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$元の変数に戻す:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = \cos{\left({\color{red}\left(y z\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$定数倍の法則 $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ を $$$c = z$$$ と $$$f{\left(y \right)} = y$$$ に対して適用します:
$$\cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = \cos{\left(y z \right)} {\color{red}\left(z \frac{d}{dy} \left(y\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$定数の導数は$$$0$$$です:
$$z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(\frac{d}{dy} \left(e^{x}\right)\right)} = z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(0\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$z \cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = z \cos{\left(y z \right)} {\color{red}\left(1\right)}$$したがって、$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$。
解答
$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$A