$$$\cos{\left(\ln\left(x\right) \right)}$$$の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right)$$$ を求めよ。
解答
関数$$$\cos{\left(\ln\left(x\right) \right)}$$$は、2つの関数$$$f{\left(u \right)} = \cos{\left(u \right)}$$$と$$$g{\left(x \right)} = \ln\left(x\right)$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$余弦関数の導関数は$$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$元の変数に戻す:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = - \sin{\left({\color{red}\left(\ln\left(x\right)\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$自然対数の導関数は $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$- \sin{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = - \sin{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{1}{x}\right)}$$したがって、$$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right) = - \frac{\sin{\left(\ln\left(x\right) \right)}}{x}$$$。
解答
$$$\frac{d}{dx} \left(\cos{\left(\ln\left(x\right) \right)}\right) = - \frac{\sin{\left(\ln\left(x\right) \right)}}{x}$$$A