$$$x$$$ に関する $$$\cos{\left(b - x \right)}$$$ の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)$$$ を求めよ。
解答
関数$$$\cos{\left(b - x \right)}$$$は、2つの関数$$$f{\left(u \right)} = \cos{\left(u \right)}$$$と$$$g{\left(x \right)} = b - x$$$の合成$$$f{\left(g{\left(x \right)} \right)}$$$である。
連鎖律 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ を適用する:
$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(b - x\right)\right)}$$余弦関数の導関数は$$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(b - x\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(b - x\right)$$元の変数に戻す:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(b - x\right) = - \sin{\left({\color{red}\left(b - x\right)} \right)} \frac{d}{dx} \left(b - x\right)$$和/差の導関数は、導関数の和/差である:
$$- \sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(b - x\right)\right)} = - \sin{\left(b - x \right)} {\color{red}\left(\frac{db}{dx} - \frac{d}{dx} \left(x\right)\right)}$$定数の導数は$$$0$$$です:
$$- \left({\color{red}\left(\frac{db}{dx}\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)} = - \left({\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \sin{\left(b - x \right)} {\color{red}\left(1\right)}$$したがって、$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$。
解答
$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$A