$$$2 x_{0}$$$の導関数
入力内容
$$$\frac{d}{dx_{0}} \left(2 x_{0}\right)$$$ を求めよ。
解答
定数倍の法則 $$$\frac{d}{dx_{0}} \left(c f{\left(x_{0} \right)}\right) = c \frac{d}{dx_{0}} \left(f{\left(x_{0} \right)}\right)$$$ を $$$c = 2$$$ と $$$f{\left(x_{0} \right)} = x_{0}$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dx_{0}} \left(2 x_{0}\right)\right)} = {\color{red}\left(2 \frac{d}{dx_{0}} \left(x_{0}\right)\right)}$$$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx_{0}} \left(x_{0}^{n}\right) = n x_{0}^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx_{0}} \left(x_{0}\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dx_{0}} \left(x_{0}\right)\right)} = 2 {\color{red}\left(1\right)}$$したがって、$$$\frac{d}{dx_{0}} \left(2 x_{0}\right) = 2$$$。
解答
$$$\frac{d}{dx_{0}} \left(2 x_{0}\right) = 2$$$A
Please try a new game Rotatly