$$$x$$$ に関する $$$2 x^{2} - y$$$ の導関数
入力内容
$$$\frac{d}{dx} \left(2 x^{2} - y\right)$$$ を求めよ。
解答
和/差の導関数は、導関数の和/差である:
$${\color{red}\left(\frac{d}{dx} \left(2 x^{2} - y\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right) - \frac{dy}{dx}\right)}$$定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ を $$$c = 2$$$ と $$$f{\left(x \right)} = x^{2}$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)} - \frac{dy}{dx} = {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)} - \frac{dy}{dx}$$定数の導数は$$$0$$$です:
$$- {\color{red}\left(\frac{dy}{dx}\right)} + 2 \frac{d}{dx} \left(x^{2}\right) = - {\color{red}\left(0\right)} + 2 \frac{d}{dx} \left(x^{2}\right)$$冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を $$$n = 2$$$ に対して適用する:
$$2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 2 {\color{red}\left(2 x\right)}$$したがって、$$$\frac{d}{dx} \left(2 x^{2} - y\right) = 4 x$$$。
解答
$$$\frac{d}{dx} \left(2 x^{2} - y\right) = 4 x$$$A
Please try a new game Rotatly