$$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)$$$ を求めよ。
解答
定数倍の法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ を $$$c = - \frac{\sqrt{5}}{5}$$$ と $$$f{\left(t \right)} = \sin{\left(t \right)}$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)\right)} = {\color{red}\left(- \frac{\sqrt{5}}{5} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$正弦関数の導関数は$$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$- \frac{\sqrt{5} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{5} = - \frac{\sqrt{5} {\color{red}\left(\cos{\left(t \right)}\right)}}{5}$$したがって、$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$。
解答
$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$A