$$$- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}$$$の導関数
関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)
入力内容
$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)$$$ を求めよ。
解答
定数倍の法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ を $$$c = - \frac{\sqrt{2}}{4}$$$ と $$$f{\left(t \right)} = \frac{1}{t^{\frac{3}{2}}}$$$ に対して適用します:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right)\right)} = {\color{red}\left(- \frac{\sqrt{2}}{4} \frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}$$冪法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ を $$$n = - \frac{3}{2}$$$ に対して適用する:
$$- \frac{\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{\frac{3}{2}}}\right)\right)}}{4} = - \frac{\sqrt{2} {\color{red}\left(- \frac{3}{2 t^{\frac{5}{2}}}\right)}}{4}$$したがって、$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$。
解答
$$$\frac{d}{dt} \left(- \frac{\sqrt{2}}{4 t^{\frac{3}{2}}}\right) = \frac{3 \sqrt{2}}{8 t^{\frac{5}{2}}}$$$A