Procedimento di Gram-Schmidt per $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$

Il calcolatore ortonormalizzerà l'insieme dei vettori $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$ utilizzando il procedimento di Gram-Schmidt, con i passaggi mostrati.
A
$$$\mathbf{\vec{v_{1}}}$$$

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Ortonormalizza l'insieme dei vettori $$$\mathbf{\vec{v_{1}}} = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$ usando il processo di Gram-Schmidt.

Soluzione

Secondo il procedimento di Gram-Schmidt, $$$\mathbf{\vec{u_{k}}} = \mathbf{\vec{v_{k}}} - \sum_{j=1}^{k - 1} \operatorname{proj}_{\mathbf{\vec{u_{j}}}}\left(\mathbf{\vec{v_{k}}}\right)$$$, dove $$$\operatorname{proj}_{\mathbf{\vec{u_{j}}}}\left(\mathbf{\vec{v_{k}}}\right) = \frac{\mathbf{\vec{u_{j}}}\cdot \mathbf{\vec{v_{k}}}}{\mathbf{\left\lvert\vec{u_{j}}\right\rvert}^{2}} \mathbf{\vec{u_{j}}}$$$ è una proiezione vettoriale.

Il vettore normalizzato è $$$\mathbf{\vec{e_{k}}} = \frac{\mathbf{\vec{u_{k}}}}{\mathbf{\left\lvert\vec{u_{k}}\right\rvert}}$$$.

Passo 1

$$$\mathbf{\vec{u_{1}}} = \mathbf{\vec{v_{1}}} = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$

$$$\mathbf{\vec{e_{1}}} = \frac{\mathbf{\vec{u_{1}}}}{\mathbf{\left\lvert\vec{u_{1}}\right\rvert}} = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$ (per i passaggi, vedi calcolatore del vettore unitario.)

Risposta

L'insieme dei vettori ortonormali è $$$\left\{\left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\right\}$$$A.


Please try a new game Rotatly