Gram-Schmidt process for $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$

The calculator will orthonormalize the set of the vectors $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$ using the Gram-Schmidt process, with steps shown.
A
$$$\mathbf{\vec{v_{1}}}$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Orthonormalize the set of the vectors $$$\mathbf{\vec{v_{1}}} = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$ using the Gram-Schmidt process.

Solution

According to the Gram-Schmidt process, $$$\mathbf{\vec{u_{k}}} = \mathbf{\vec{v_{k}}} - \sum_{j=1}^{k - 1} \operatorname{proj}_{\mathbf{\vec{u_{j}}}}\left(\mathbf{\vec{v_{k}}}\right)$$$, where $$$\operatorname{proj}_{\mathbf{\vec{u_{j}}}}\left(\mathbf{\vec{v_{k}}}\right) = \frac{\mathbf{\vec{u_{j}}}\cdot \mathbf{\vec{v_{k}}}}{\mathbf{\left\lvert\vec{u_{j}}\right\rvert}^{2}} \mathbf{\vec{u_{j}}}$$$ is a vector projection.

The normalized vector is $$$\mathbf{\vec{e_{k}}} = \frac{\mathbf{\vec{u_{k}}}}{\mathbf{\left\lvert\vec{u_{k}}\right\rvert}}$$$.

Step 1

$$$\mathbf{\vec{u_{1}}} = \mathbf{\vec{v_{1}}} = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$

$$$\mathbf{\vec{e_{1}}} = \frac{\mathbf{\vec{u_{1}}}}{\mathbf{\left\lvert\vec{u_{1}}\right\rvert}} = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$ (for steps, see unit vector calculator).

Answer

The set of the orthonormal vectors is $$$\left\{\left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\right\}$$$A.


Please try a new game Rotatly