Unit vector in the direction of $$$\left\langle i a g h m n r s t^{2} e^{e i n o r s^{2}}\right\rangle$$$
Your Input
Find the unit vector in the direction of $$$\mathbf{\vec{u}} = \left\langle i a g h m n r s t^{2} e^{e i n o r s^{2}}\right\rangle$$$.
Solution
The magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = t^{2} \left|{a g h m n r s}\right|$$$ (for steps, see magnitude calculator).
The unit vector is obtained by dividing each coordinate of the given vector by the magnitude.
Thus, the unit vector is $$$\mathbf{\vec{e}} = \left\langle \frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\right\rangle$$$ (for steps, see vector scalar multiplication calculator).
Answer
The unit vector in the direction of $$$\left\langle i a g h m n r s t^{2} e^{e i n o r s^{2}}\right\rangle$$$A is $$$\left\langle \frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\right\rangle$$$A.