Integrale di $$$\frac{1}{\sqrt{4 x^{2} - 5}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\sqrt{4 x^{2} - 5}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\sqrt{4 x^{2} - 5}}\, dx$$$.

Soluzione

Sia $$$x=\frac{\sqrt{5} \cosh{\left(u \right)}}{2}$$$.

Quindi $$$dx=\left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right)^{\prime }du = \frac{\sqrt{5} \sinh{\left(u \right)}}{2} du$$$ (i passaggi possono essere visti »).

Inoltre, ne consegue che $$$u=\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}$$$.

L'integrando diventa

$$$\frac{1}{\sqrt{4 x^{2} - 5}} = \frac{1}{\sqrt{5 \cosh^{2}{\left( u \right)} - 5}}$$$

Usa l'identità $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{5 \cosh^{2}{\left( u \right)} - 5}}=\frac{\sqrt{5}}{5 \sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{\sqrt{5}}{5 \sqrt{\sinh^{2}{\left( u \right)}}}$$$

Assumendo che $$$\sinh{\left( u \right)} \ge 0$$$, otteniamo quanto segue:

$$$\frac{\sqrt{5}}{5 \sqrt{\sinh^{2}{\left( u \right)}}} = \frac{\sqrt{5}}{5 \sinh{\left( u \right)}}$$$

Quindi,

$${\color{red}{\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x}}} = {\color{red}{\int{\frac{1}{2} d u}}}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=\frac{1}{2}$$$:

$${\color{red}{\int{\frac{1}{2} d u}}} = {\color{red}{\left(\frac{u}{2}\right)}}$$

Ricordiamo che $$$u=\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}$$$:

$$\frac{{\color{red}{u}}}{2} = \frac{{\color{red}{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}}}{2}$$

Pertanto,

$$\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x} = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x} = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2}+C$$

Risposta

$$$\int \frac{1}{\sqrt{4 x^{2} - 5}}\, dx = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2} + C$$$A


Please try a new game Rotatly