Integral of $$$\frac{1}{\sqrt{4 x^{2} - 5}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\sqrt{4 x^{2} - 5}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\sqrt{4 x^{2} - 5}}\, dx$$$.

Solution

Let $$$x=\frac{\sqrt{5} \cosh{\left(u \right)}}{2}$$$.

Then $$$dx=\left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right)^{\prime }du = \frac{\sqrt{5} \sinh{\left(u \right)}}{2} du$$$ (steps can be seen »).

Also, it follows that $$$u=\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}$$$.

Thus,

$$$\frac{1}{\sqrt{4 x^{2} - 5}} = \frac{1}{\sqrt{5 \cosh^{2}{\left( u \right)} - 5}}$$$

Use the identity $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{5 \cosh^{2}{\left( u \right)} - 5}}=\frac{\sqrt{5}}{5 \sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{\sqrt{5}}{5 \sqrt{\sinh^{2}{\left( u \right)}}}$$$

Assuming that $$$\sinh{\left( u \right)} \ge 0$$$, we obtain the following:

$$$\frac{\sqrt{5}}{5 \sqrt{\sinh^{2}{\left( u \right)}}} = \frac{\sqrt{5}}{5 \sinh{\left( u \right)}}$$$

Thus,

$${\color{red}{\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x}}} = {\color{red}{\int{\frac{1}{2} d u}}}$$

Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=\frac{1}{2}$$$:

$${\color{red}{\int{\frac{1}{2} d u}}} = {\color{red}{\left(\frac{u}{2}\right)}}$$

Recall that $$$u=\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}$$$:

$$\frac{{\color{red}{u}}}{2} = \frac{{\color{red}{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}}}{2}$$

Therefore,

$$\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x} = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2}$$

Add the constant of integration:

$$\int{\frac{1}{\sqrt{4 x^{2} - 5}} d x} = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2}+C$$

Answer

$$$\int \frac{1}{\sqrt{4 x^{2} - 5}}\, dx = \frac{\operatorname{acosh}{\left(\frac{2 \sqrt{5} x}{5} \right)}}{2} + C$$$A


Please try a new game Rotatly