Integrale di $$$\sqrt{a - x}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sqrt{a - x}\, dx$$$.
Soluzione
Sia $$$u=a - x$$$.
Quindi $$$du=\left(a - x\right)^{\prime }dx = - dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = - du$$$.
L'integrale può essere riscritto come
$${\color{red}{\int{\sqrt{a - x} d x}}} = {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \sqrt{u}$$$:
$${\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{2}$$$:
$$- {\color{red}{\int{\sqrt{u} d u}}}=- {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Ricordiamo che $$$u=a - x$$$:
$$- \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \frac{2 {\color{red}{\left(a - x\right)}}^{\frac{3}{2}}}{3}$$
Pertanto,
$$\int{\sqrt{a - x} d x} = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3}$$
Aggiungi la costante di integrazione:
$$\int{\sqrt{a - x} d x} = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3}+C$$
Risposta
$$$\int \sqrt{a - x}\, dx = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3} + C$$$A