Integral of $$$\sqrt{a - x}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\sqrt{a - x}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sqrt{a - x}\, dx$$$.

Solution

Let $$$u=a - x$$$.

Then $$$du=\left(a - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.

Thus,

$${\color{red}{\int{\sqrt{a - x} d x}}} = {\color{red}{\int{\left(- \sqrt{u}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \sqrt{u}$$$:

$${\color{red}{\int{\left(- \sqrt{u}\right)d u}}} = {\color{red}{\left(- \int{\sqrt{u} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{2}$$$:

$$- {\color{red}{\int{\sqrt{u} d u}}}=- {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Recall that $$$u=a - x$$$:

$$- \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \frac{2 {\color{red}{\left(a - x\right)}}^{\frac{3}{2}}}{3}$$

Therefore,

$$\int{\sqrt{a - x} d x} = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3}$$

Add the constant of integration:

$$\int{\sqrt{a - x} d x} = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3}+C$$

Answer

$$$\int \sqrt{a - x}\, dx = - \frac{2 \left(a - x\right)^{\frac{3}{2}}}{3} + C$$$A


Please try a new game Rotatly