Integral dari $$$x^{\frac{27}{10}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int x^{\frac{27}{10}}\, dx$$$.
Solusi
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{27}{10}$$$:
$${\color{red}{\int{x^{\frac{27}{10}} d x}}}={\color{red}{\frac{x^{1 + \frac{27}{10}}}{1 + \frac{27}{10}}}}={\color{red}{\left(\frac{10 x^{\frac{37}{10}}}{37}\right)}}$$
Oleh karena itu,
$$\int{x^{\frac{27}{10}} d x} = \frac{10 x^{\frac{37}{10}}}{37}$$
Tambahkan konstanta integrasi:
$$\int{x^{\frac{27}{10}} d x} = \frac{10 x^{\frac{37}{10}}}{37}+C$$
Jawaban
$$$\int x^{\frac{27}{10}}\, dx = \frac{10 x^{\frac{37}{10}}}{37} + C$$$A