Integral dari $$$\frac{2 e^{- \frac{2}{x}}}{x^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{2 e^{- \frac{2}{x}}}{x^{2}}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{e^{- \frac{2}{x}}}{x^{2}}$$$:
$${\color{red}{\int{\frac{2 e^{- \frac{2}{x}}}{x^{2}} d x}}} = {\color{red}{\left(2 \int{\frac{e^{- \frac{2}{x}}}{x^{2}} d x}\right)}}$$
Misalkan $$$u=- \frac{2}{x}$$$.
Kemudian $$$du=\left(- \frac{2}{x}\right)^{\prime }dx = \frac{2}{x^{2}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x^{2}} = \frac{du}{2}$$$.
Jadi,
$$2 {\color{red}{\int{\frac{e^{- \frac{2}{x}}}{x^{2}} d x}}} = 2 {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = e^{u}$$$:
$$2 {\color{red}{\int{\frac{e^{u}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Ingat bahwa $$$u=- \frac{2}{x}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(- \frac{2}{x}\right)}}}$$
Oleh karena itu,
$$\int{\frac{2 e^{- \frac{2}{x}}}{x^{2}} d x} = e^{- \frac{2}{x}}$$
Tambahkan konstanta integrasi:
$$\int{\frac{2 e^{- \frac{2}{x}}}{x^{2}} d x} = e^{- \frac{2}{x}}+C$$
Jawaban
$$$\int \frac{2 e^{- \frac{2}{x}}}{x^{2}}\, dx = e^{- \frac{2}{x}} + C$$$A