Intégrale de $$$\sin^{2}{\left(x_{0} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin^{2}{\left(x_{0} \right)}\, dx_{0}$$$.
Solution
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha=x_{0}$$$:
$${\color{red}{\int{\sin^{2}{\left(x_{0} \right)} d x_{0}}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x_{0} \right)}}{2}\right)d x_{0}}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x_{0} \right)}\, dx_{0} = c \int f{\left(x_{0} \right)}\, dx_{0}$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x_{0} \right)} = 1 - \cos{\left(2 x_{0} \right)}$$$ :
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x_{0} \right)}}{2}\right)d x_{0}}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x_{0} \right)}\right)d x_{0}}}{2}\right)}}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x_{0} \right)}\right)d x_{0}}}}}{2} = \frac{{\color{red}{\left(\int{1 d x_{0}} - \int{\cos{\left(2 x_{0} \right)} d x_{0}}\right)}}}{2}$$
Appliquez la règle de la constante $$$\int c\, dx_{0} = c x_{0}$$$ avec $$$c=1$$$:
$$- \frac{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}{2} + \frac{{\color{red}{\int{1 d x_{0}}}}}{2} = - \frac{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}{2} + \frac{{\color{red}{x_{0}}}}{2}$$
Soit $$$u=2 x_{0}$$$.
Alors $$$du=\left(2 x_{0}\right)^{\prime }dx_{0} = 2 dx_{0}$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx_{0} = \frac{du}{2}$$$.
Ainsi,
$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}}}{2} = \frac{x_{0}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{x_{0}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{x_{0}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Rappelons que $$$u=2 x_{0}$$$ :
$$\frac{x_{0}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{x_{0}}{2} - \frac{\sin{\left({\color{red}{\left(2 x_{0}\right)}} \right)}}{4}$$
Par conséquent,
$$\int{\sin^{2}{\left(x_{0} \right)} d x_{0}} = \frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}$$
Ajouter la constante d'intégration :
$$\int{\sin^{2}{\left(x_{0} \right)} d x_{0}} = \frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}+C$$
Réponse
$$$\int \sin^{2}{\left(x_{0} \right)}\, dx_{0} = \left(\frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}\right) + C$$$A