Integrale di $$$\sin^{2}{\left(x_{0} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\sin^{2}{\left(x_{0} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \sin^{2}{\left(x_{0} \right)}\, dx_{0}$$$.

Soluzione

Applica la formula di riduzione della potenza per $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=x_{0}$$$:

$${\color{red}{\int{\sin^{2}{\left(x_{0} \right)} d x_{0}}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x_{0} \right)}}{2}\right)d x_{0}}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x_{0} \right)}\, dx_{0} = c \int f{\left(x_{0} \right)}\, dx_{0}$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x_{0} \right)} = 1 - \cos{\left(2 x_{0} \right)}$$$:

$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x_{0} \right)}}{2}\right)d x_{0}}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x_{0} \right)}\right)d x_{0}}}{2}\right)}}$$

Integra termine per termine:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x_{0} \right)}\right)d x_{0}}}}}{2} = \frac{{\color{red}{\left(\int{1 d x_{0}} - \int{\cos{\left(2 x_{0} \right)} d x_{0}}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, dx_{0} = c x_{0}$$$ con $$$c=1$$$:

$$- \frac{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}{2} + \frac{{\color{red}{\int{1 d x_{0}}}}}{2} = - \frac{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}{2} + \frac{{\color{red}{x_{0}}}}{2}$$

Sia $$$u=2 x_{0}$$$.

Quindi $$$du=\left(2 x_{0}\right)^{\prime }dx_{0} = 2 dx_{0}$$$ (i passaggi si possono vedere »), e si ha che $$$dx_{0} = \frac{du}{2}$$$.

L'integrale diventa

$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\cos{\left(2 x_{0} \right)} d x_{0}}}}}{2} = \frac{x_{0}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{x_{0}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x_{0}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{x_{0}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$

Ricordiamo che $$$u=2 x_{0}$$$:

$$\frac{x_{0}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{x_{0}}{2} - \frac{\sin{\left({\color{red}{\left(2 x_{0}\right)}} \right)}}{4}$$

Pertanto,

$$\int{\sin^{2}{\left(x_{0} \right)} d x_{0}} = \frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}$$

Aggiungi la costante di integrazione:

$$\int{\sin^{2}{\left(x_{0} \right)} d x_{0}} = \frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}+C$$

Risposta

$$$\int \sin^{2}{\left(x_{0} \right)}\, dx_{0} = \left(\frac{x_{0}}{2} - \frac{\sin{\left(2 x_{0} \right)}}{4}\right) + C$$$A


Please try a new game Rotatly