Intégrale de $$$\frac{1}{t^{23}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{t^{23}}\, dt$$$.
Solution
Appliquer la règle de puissance $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-23$$$ :
$${\color{red}{\int{\frac{1}{t^{23}} d t}}}={\color{red}{\int{t^{-23} d t}}}={\color{red}{\frac{t^{-23 + 1}}{-23 + 1}}}={\color{red}{\left(- \frac{t^{-22}}{22}\right)}}={\color{red}{\left(- \frac{1}{22 t^{22}}\right)}}$$
Par conséquent,
$$\int{\frac{1}{t^{23}} d t} = - \frac{1}{22 t^{22}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{t^{23}} d t} = - \frac{1}{22 t^{22}}+C$$
Réponse
$$$\int \frac{1}{t^{23}}\, dt = - \frac{1}{22 t^{22}} + C$$$A