Intégrale de $$$- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\csc^{2}{\left(6 x \right)} d x} + \int{\sec^{2}{\left(5 x \right)} d x}\right)}}$$
Soit $$$u=5 x$$$.
Alors $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{5}$$$.
Par conséquent,
$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(5 x \right)} d x}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$ :
$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\left(\frac{\int{\sec^{2}{\left(u \right)} d u}}{5}\right)}}$$
L’intégrale de $$$\sec^{2}{\left(u \right)}$$$ est $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$ :
$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\tan{\left(u \right)}}}}{5}$$
Rappelons que $$$u=5 x$$$ :
$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{u}} \right)}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
Soit $$$u=6 x$$$.
Alors $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{6}$$$.
L’intégrale devient
$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\csc^{2}{\left(6 x \right)} d x}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(u \right)} = \csc^{2}{\left(u \right)}$$$ :
$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\left(\frac{\int{\csc^{2}{\left(u \right)} d u}}{6}\right)}}$$
L’intégrale de $$$\csc^{2}{\left(u \right)}$$$ est $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$ :
$$\frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{6} = \frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{6}$$
Rappelons que $$$u=6 x$$$ :
$$\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{u}} \right)}}{6} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{\left(6 x\right)}} \right)}}{6}$$
Par conséquent,
$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}$$
Ajouter la constante d'intégration :
$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}+C$$
Réponse
$$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx = \left(\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}\right) + C$$$A