Integralen av $$$- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\csc^{2}{\left(6 x \right)} d x} + \int{\sec^{2}{\left(5 x \right)} d x}\right)}}$$

Låt $$$u=5 x$$$ vara.

$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{5}$$$.

Integralen blir

$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(5 x \right)} d x}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{5}$$$ och $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\left(\frac{\int{\sec^{2}{\left(u \right)} d u}}{5}\right)}}$$

Integralen av $$$\sec^{2}{\left(u \right)}$$$ är $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\tan{\left(u \right)}}}}{5}$$

Kom ihåg att $$$u=5 x$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{u}} \right)}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$

Låt $$$u=6 x$$$ vara.

$$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{6}$$$.

Alltså,

$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\csc^{2}{\left(6 x \right)} d x}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{6}$$$ och $$$f{\left(u \right)} = \csc^{2}{\left(u \right)}$$$:

$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\left(\frac{\int{\csc^{2}{\left(u \right)} d u}}{6}\right)}}$$

Integralen av $$$\csc^{2}{\left(u \right)}$$$ är $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{6} = \frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{6}$$

Kom ihåg att $$$u=6 x$$$:

$$\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{u}} \right)}}{6} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{\left(6 x\right)}} \right)}}{6}$$

Alltså,

$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}$$

Lägg till integrationskonstanten:

$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}+C$$

Svar

$$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx = \left(\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}\right) + C$$$A


Please try a new game Rotatly