Integral dari $$$- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\csc^{2}{\left(6 x \right)} d x} + \int{\sec^{2}{\left(5 x \right)} d x}\right)}}$$

Misalkan $$$u=5 x$$$.

Kemudian $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{5}$$$.

Integralnya menjadi

$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(5 x \right)} d x}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{5}$$$ dan $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(u \right)}}{5} d u}}} = - \int{\csc^{2}{\left(6 x \right)} d x} + {\color{red}{\left(\frac{\int{\sec^{2}{\left(u \right)} d u}}{5}\right)}}$$

Integral dari $$$\sec^{2}{\left(u \right)}$$$ adalah $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{{\color{red}{\tan{\left(u \right)}}}}{5}$$

Ingat bahwa $$$u=5 x$$$:

$$- \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{u}} \right)}}{5} = - \int{\csc^{2}{\left(6 x \right)} d x} + \frac{\tan{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$

Misalkan $$$u=6 x$$$.

Kemudian $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{6}$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\csc^{2}{\left(6 x \right)} d x}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{6}$$$ dan $$$f{\left(u \right)} = \csc^{2}{\left(u \right)}$$$:

$$\frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\int{\frac{\csc^{2}{\left(u \right)}}{6} d u}}} = \frac{\tan{\left(5 x \right)}}{5} - {\color{red}{\left(\frac{\int{\csc^{2}{\left(u \right)} d u}}{6}\right)}}$$

Integral dari $$$\csc^{2}{\left(u \right)}$$$ adalah $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$\frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}}{6} = \frac{\tan{\left(5 x \right)}}{5} - \frac{{\color{red}{\left(- \cot{\left(u \right)}\right)}}}{6}$$

Ingat bahwa $$$u=6 x$$$:

$$\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{u}} \right)}}{6} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left({\color{red}{\left(6 x\right)}} \right)}}{6}$$

Oleh karena itu,

$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}$$

Tambahkan konstanta integrasi:

$$\int{\left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)d x} = \frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}+C$$

Jawaban

$$$\int \left(- \csc^{2}{\left(6 x \right)} + \sec^{2}{\left(5 x \right)}\right)\, dx = \left(\frac{\tan{\left(5 x \right)}}{5} + \frac{\cot{\left(6 x \right)}}{6}\right) + C$$$A


Please try a new game Rotatly