Dérivée de $$$x + \sin{\left(x \right)}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)$$$.
Solution
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$La dérivée du sinus est $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$ :
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x\right)$$Appliquez la règle de puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = 1$$$, en d'autres termes, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(1\right)}$$Ainsi, $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$.
Réponse
$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$A