Dérivée de $$$\sqrt{x} + \frac{5}{\sqrt{x}}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)$$$.
Solution
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right) + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right) = {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)} + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)$$Appliquez la règle du facteur constant $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ avec $$$c = 5$$$ et $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}} = {\color{red}\left(5 \frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}}$$Appliquez la règle de la puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = - \frac{1}{2}$$$:
$$5 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}} = 5 {\color{red}\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)} + \frac{1}{2 \sqrt{x}}$$Simplifier:
$$\frac{1}{2 \sqrt{x}} - \frac{5}{2 x^{\frac{3}{2}}} = \frac{x - 5}{2 x^{\frac{3}{2}}}$$Ainsi, $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$.
Réponse
$$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$A