Dérivée de $$$\sqrt{a^{x} - 1}$$$ par rapport à $$$x$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right)$$$.
Solution
La fonction $$$\sqrt{a^{x} - 1}$$$ est la composée $$$f{\left(g{\left(x \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = \sqrt{u}$$$ et $$$g{\left(x \right)} = a^{x} - 1$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(a^{x} - 1\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ avec $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(a^{x} - 1\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(a^{x} - 1\right)$$Revenir à la variable initiale:
$$\frac{\frac{d}{dx} \left(a^{x} - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(a^{x} - 1\right)}{2 \sqrt{{\color{red}\left(a^{x} - 1\right)}}}$$La dérivée d'une somme/différence est la somme/différence des dérivées :
$$\frac{{\color{red}\left(\frac{d}{dx} \left(a^{x} - 1\right)\right)}}{2 \sqrt{a^{x} - 1}} = \frac{{\color{red}\left(\frac{d}{dx} \left(a^{x}\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{a^{x} - 1}}$$Appliquez la règle des exposants $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ avec $$$n = a$$$ :
$$\frac{{\color{red}\left(\frac{d}{dx} \left(a^{x}\right)\right)} - \frac{d}{dx} \left(1\right)}{2 \sqrt{a^{x} - 1}} = \frac{{\color{red}\left(a^{x} \ln\left(a\right)\right)} - \frac{d}{dx} \left(1\right)}{2 \sqrt{a^{x} - 1}}$$La dérivée d'une constante est $$$0$$$ :
$$\frac{a^{x} \ln\left(a\right) - {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{a^{x} - 1}} = \frac{a^{x} \ln\left(a\right) - {\color{red}\left(0\right)}}{2 \sqrt{a^{x} - 1}}$$Ainsi, $$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right) = \frac{a^{x} \ln\left(a\right)}{2 \sqrt{a^{x} - 1}}$$$.
Réponse
$$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right) = \frac{a^{x} \ln\left(a\right)}{2 \sqrt{a^{x} - 1}}$$$A