Dérivée de $$$\sin{\left(u \right)} - \cos{\left(u \right)}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{du} \left(\sin{\left(u \right)} - \cos{\left(u \right)}\right)$$$.
Solution
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)} - \cos{\left(u \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) - \frac{d}{du} \left(\cos{\left(u \right)}\right)\right)}$$La dérivée du sinus est $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$ :
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} - \frac{d}{du} \left(\cos{\left(u \right)}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} - \frac{d}{du} \left(\cos{\left(u \right)}\right)$$La dérivée du cosinus est $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$ :
$$\cos{\left(u \right)} - {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} = \cos{\left(u \right)} - {\color{red}\left(- \sin{\left(u \right)}\right)}$$Simplifier:
$$\sin{\left(u \right)} + \cos{\left(u \right)} = \sqrt{2} \sin{\left(u + \frac{\pi}{4} \right)}$$Ainsi, $$$\frac{d}{du} \left(\sin{\left(u \right)} - \cos{\left(u \right)}\right) = \sqrt{2} \sin{\left(u + \frac{\pi}{4} \right)}$$$.
Réponse
$$$\frac{d}{du} \left(\sin{\left(u \right)} - \cos{\left(u \right)}\right) = \sqrt{2} \sin{\left(u + \frac{\pi}{4} \right)}$$$A