Dérivée de $$$\ln^{3}\left(u\right)$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{du} \left(\ln^{3}\left(u\right)\right)$$$.
Solution
La fonction $$$\ln^{3}\left(u\right)$$$ est la composée $$$f{\left(g{\left(u \right)} \right)}$$$ de deux fonctions $$$f{\left(v \right)} = v^{3}$$$ et $$$g{\left(u \right)} = \ln\left(u\right)$$$.
Appliquez la règle de la chaîne $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln^{3}\left(u\right)\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(v^{3}\right) \frac{d}{du} \left(\ln\left(u\right)\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{dv} \left(v^{n}\right) = n v^{n - 1}$$$ avec $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dv} \left(v^{3}\right)\right)} \frac{d}{du} \left(\ln\left(u\right)\right) = {\color{red}\left(3 v^{2}\right)} \frac{d}{du} \left(\ln\left(u\right)\right)$$Revenir à la variable initiale:
$$3 {\color{red}\left(v\right)}^{2} \frac{d}{du} \left(\ln\left(u\right)\right) = 3 {\color{red}\left(\ln\left(u\right)\right)}^{2} \frac{d}{du} \left(\ln\left(u\right)\right)$$La dérivée du logarithme naturel est $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$ :
$$3 \ln^{2}\left(u\right) {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} = 3 \ln^{2}\left(u\right) {\color{red}\left(\frac{1}{u}\right)}$$Ainsi, $$$\frac{d}{du} \left(\ln^{3}\left(u\right)\right) = \frac{3 \ln^{2}\left(u\right)}{u}$$$.
Réponse
$$$\frac{d}{du} \left(\ln^{3}\left(u\right)\right) = \frac{3 \ln^{2}\left(u\right)}{u}$$$A