Dérivée de $$$e^{- \frac{1}{u^{2}}}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right)$$$.
Solution
La fonction $$$e^{- \frac{1}{u^{2}}}$$$ est la composée $$$f{\left(g{\left(u \right)} \right)}$$$ de deux fonctions $$$f{\left(v \right)} = e^{v}$$$ et $$$g{\left(u \right)} = - \frac{1}{u^{2}}$$$.
Appliquez la règle de la chaîne $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(e^{v}\right) \frac{d}{du} \left(- \frac{1}{u^{2}}\right)\right)}$$La dérivée de la fonction exponentielle est $$$\frac{d}{dv} \left(e^{v}\right) = e^{v}$$$ :
$${\color{red}\left(\frac{d}{dv} \left(e^{v}\right)\right)} \frac{d}{du} \left(- \frac{1}{u^{2}}\right) = {\color{red}\left(e^{v}\right)} \frac{d}{du} \left(- \frac{1}{u^{2}}\right)$$Revenir à la variable initiale:
$$e^{{\color{red}\left(v\right)}} \frac{d}{du} \left(- \frac{1}{u^{2}}\right) = e^{{\color{red}\left(- \frac{1}{u^{2}}\right)}} \frac{d}{du} \left(- \frac{1}{u^{2}}\right)$$Appliquez la règle du facteur constant $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ avec $$$c = -1$$$ et $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$$e^{- \frac{1}{u^{2}}} {\color{red}\left(\frac{d}{du} \left(- \frac{1}{u^{2}}\right)\right)} = e^{- \frac{1}{u^{2}}} {\color{red}\left(- \frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ avec $$$n = -2$$$:
$$- e^{- \frac{1}{u^{2}}} {\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)} = - e^{- \frac{1}{u^{2}}} {\color{red}\left(- \frac{2}{u^{3}}\right)}$$Ainsi, $$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right) = \frac{2 e^{- \frac{1}{u^{2}}}}{u^{3}}$$$.
Réponse
$$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right) = \frac{2 e^{- \frac{1}{u^{2}}}}{u^{3}}$$$A