Dérivée de $$$\cos{\left(t \right)} - \cos{\left(2 t \right)}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dt} \left(\cos{\left(t \right)} - \cos{\left(2 t \right)}\right)$$$.
Solution
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)} - \cos{\left(2 t \right)}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) - \frac{d}{dt} \left(\cos{\left(2 t \right)}\right)\right)}$$La dérivée du cosinus est $$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$ :
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} - \frac{d}{dt} \left(\cos{\left(2 t \right)}\right) = {\color{red}\left(- \sin{\left(t \right)}\right)} - \frac{d}{dt} \left(\cos{\left(2 t \right)}\right)$$La fonction $$$\cos{\left(2 t \right)}$$$ est la composée $$$f{\left(g{\left(t \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ et $$$g{\left(t \right)} = 2 t$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$$- \sin{\left(t \right)} - {\color{red}\left(\frac{d}{dt} \left(\cos{\left(2 t \right)}\right)\right)} = - \sin{\left(t \right)} - {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(2 t\right)\right)}$$La dérivée du cosinus est $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$ :
$$- \sin{\left(t \right)} - {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(2 t\right) = - \sin{\left(t \right)} - {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(2 t\right)$$Revenir à la variable initiale:
$$- \sin{\left(t \right)} + \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(2 t\right) = - \sin{\left(t \right)} + \sin{\left({\color{red}\left(2 t\right)} \right)} \frac{d}{dt} \left(2 t\right)$$Appliquez la règle du facteur constant $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ avec $$$c = 2$$$ et $$$f{\left(t \right)} = t$$$:
$$- \sin{\left(t \right)} + \sin{\left(2 t \right)} {\color{red}\left(\frac{d}{dt} \left(2 t\right)\right)} = - \sin{\left(t \right)} + \sin{\left(2 t \right)} {\color{red}\left(2 \frac{d}{dt} \left(t\right)\right)}$$Appliquez la règle de puissance $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ avec $$$n = 1$$$, en d'autres termes, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \sin{\left(t \right)} + 2 \sin{\left(2 t \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = - \sin{\left(t \right)} + 2 \sin{\left(2 t \right)} {\color{red}\left(1\right)}$$Simplifier:
$$- \sin{\left(t \right)} + 2 \sin{\left(2 t \right)} = \left(4 \cos{\left(t \right)} - 1\right) \sin{\left(t \right)}$$Ainsi, $$$\frac{d}{dt} \left(\cos{\left(t \right)} - \cos{\left(2 t \right)}\right) = \left(4 \cos{\left(t \right)} - 1\right) \sin{\left(t \right)}$$$.
Réponse
$$$\frac{d}{dt} \left(\cos{\left(t \right)} - \cos{\left(2 t \right)}\right) = \left(4 \cos{\left(t \right)} - 1\right) \sin{\left(t \right)}$$$A