Dérivée de $$$\frac{c}{x}$$$ par rapport à $$$x$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dx} \left(\frac{c}{x}\right)$$$.
Solution
Appliquez la règle du facteur constant $$$\frac{d}{dx} \left(k f{\left(x \right)}\right) = k \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ avec $$$k = c$$$ et $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{c}{x}\right)\right)} = {\color{red}\left(c \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = -1$$$:
$$c {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = c {\color{red}\left(- \frac{1}{x^{2}}\right)}$$Ainsi, $$$\frac{d}{dx} \left(\frac{c}{x}\right) = - \frac{c}{x^{2}}$$$.
Réponse
$$$\frac{d}{dx} \left(\frac{c}{x}\right) = - \frac{c}{x^{2}}$$$A