Dérivée de $$$- \sqrt{x}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dx} \left(- \sqrt{x}\right)$$$.
Solution
Appliquez la règle du facteur constant $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ avec $$$c = -1$$$ et $$$f{\left(x \right)} = \sqrt{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \sqrt{x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$Appliquez la règle de la puissance $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ avec $$$n = \frac{1}{2}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = - {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$Ainsi, $$$\frac{d}{dx} \left(- \sqrt{x}\right) = - \frac{1}{2 \sqrt{x}}$$$.
Réponse
$$$\frac{d}{dx} \left(- \sqrt{x}\right) = - \frac{1}{2 \sqrt{x}}$$$A