Dérivée de $$$- \frac{141 p t}{800} + \frac{1673}{500}$$$ par rapport à $$$t$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)$$$.
Solution
La dérivée d'une somme/différence est la somme/différence des dérivées :
$${\color{red}\left(\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)\right)} = {\color{red}\left(- \frac{d}{dt} \left(\frac{141 p t}{800}\right) + \frac{d}{dt} \left(\frac{1673}{500}\right)\right)}$$Appliquez la règle du facteur constant $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ avec $$$c = \frac{141 p}{800}$$$ et $$$f{\left(t \right)} = t$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{141 p t}{800}\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - {\color{red}\left(\frac{141 p}{800} \frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$Appliquez la règle de puissance $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ avec $$$n = 1$$$, en d'autres termes, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{141 p {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - \frac{141 p {\color{red}\left(1\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$La dérivée d'une constante est $$$0$$$ :
$$- \frac{141 p}{800} + {\color{red}\left(\frac{d}{dt} \left(\frac{1673}{500}\right)\right)} = - \frac{141 p}{800} + {\color{red}\left(0\right)}$$Ainsi, $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$.
Réponse
$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$A