$$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$:n singulaariarvohajotelma

Laskin määrittää $$$2$$$x$$$2$$$-matriisin $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$ singulaariarvohajotelman ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Pseudoinverssilaskin

$$$\times$$$
A

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä matriisin $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$ SVD.

Ratkaisu

Laske matriisin transpoosi: $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T} = \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]$$$ (vaiheet: katso matriisin transpoosilaskin).

Kerro matriisi transpoosillaan: $$$W = \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right] = \left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$ (vaiheiden näkemiseksi katso matriisikertolaskin).

Seuraavaksi etsi $$$W$$$:n ominaisarvot ja ominaisvektorit (vaiheittaiset ohjeet: katso ominaisarvojen ja -vektorien laskin).

Ominaisarvo: $$$- \frac{-3 + \sqrt{5}}{2}$$$, ominaisvektori: $$$\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]$$$.

Ominaisarvo: $$$\frac{\sqrt{5} + 3}{2}$$$, ominaisvektori: $$$\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]$$$.

Etsi nollasta poikkeavien ominaisarvojen ($$$\sigma_{i}$$$) neliöjuuret:

$$$\sigma_{1} = \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}$$$

$$$\sigma_{2} = \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}$$$

Matriisi $$$\Sigma$$$ on nollamatriisi, jonka diagonaalilla on $$$\sigma_{i}$$$: $$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right].$$$

Matriisin $$$U$$$ sarakkeet ovat normalisoidut (yksikkö)vektorit: $$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]$$$ (yksikkövektorin löytämisen vaiheet, katso yksikkövektorilaskin).

Nyt, $$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{i}$$$:

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\end{array}\right] = \left[\begin{array}{c}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\end{array}\right]$$$ (vaiheista katso matriisin skalaarikertolaskin ja matriisikertolaskin).

$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right] = \left[\begin{array}{c}\frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]$$$ (vaiheista katso matriisin skalaarikertolaskin ja matriisikertolaskin).

Siispä $$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right].$$$

Matriisit $$$U$$$, $$$\Sigma$$$ ja $$$V$$$ ovat sellaiset, että alkuperäinen matriisi $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right] = U \Sigma V^T$$$.

Vastaus

$$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.525731112119134 & 0.85065080835204\\0.85065080835204 & 0.525731112119134\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right]\approx \left[\begin{array}{cc}0.618033988749895 & 0\\0 & 1.618033988749895\end{array}\right]$$$A

$$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.85065080835204 & 0.525731112119134\\0.525731112119134 & 0.85065080835204\end{array}\right]$$$A


Please try a new game Rotatly