SVD de $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$
Calculadora relacionada: Calculadora de pseudoinversa
Sua entrada
Encontre a decomposição em valores singulares (SVD) de $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$.
Solução
Encontre a transposta da matriz: $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T} = \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]$$$ (para ver as etapas, veja calculadora de transposição de matriz).
Multiplique a matriz pela sua transposta: $$$W = \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right] = \left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$ (para ver as etapas, consulte a calculadora de multiplicação de matrizes).
Agora, encontre os autovalores e os autovetores de $$$W$$$ (para ver os passos, consulte a calculadora de autovalores e autovetores).
Autovalor: $$$- \frac{-3 + \sqrt{5}}{2}$$$, autovetor: $$$\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]$$$.
Autovalor: $$$\frac{\sqrt{5} + 3}{2}$$$, autovetor: $$$\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]$$$.
Encontre as raízes quadradas dos autovalores não nulos ($$$\sigma_{i}$$$):
$$$\sigma_{1} = \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}$$$
$$$\sigma_{2} = \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}$$$
A matriz $$$\Sigma$$$ é uma matriz nula com $$$\sigma_{i}$$$ na sua diagonal: $$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right].$$$
As colunas da matriz $$$U$$$ são os vetores normalizados (unitários): $$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]$$$ (para os passos para obter um vetor unitário, consulte calculadora de vetor unitário).
Agora, $$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{i}$$$:
$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\end{array}\right] = \left[\begin{array}{c}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\end{array}\right]$$$ (para as etapas, consulte calculadora de multiplicação de matriz por escalar e calculadora de multiplicação de matrizes).
$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right] = \left[\begin{array}{c}\frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]$$$ (para as etapas, consulte calculadora de multiplicação de matriz por escalar e calculadora de multiplicação de matrizes).
Portanto, $$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right].$$$
As matrizes $$$U$$$, $$$\Sigma$$$ e $$$V$$$ são tais que a matriz inicial $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right] = U \Sigma V^T$$$.
Resposta
$$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.525731112119134 & 0.85065080835204\\0.85065080835204 & 0.525731112119134\end{array}\right]$$$A
$$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right]\approx \left[\begin{array}{cc}0.618033988749895 & 0\\0 & 1.618033988749895\end{array}\right]$$$A
$$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.85065080835204 & 0.525731112119134\\0.525731112119134 & 0.85065080835204\end{array}\right]$$$A