Pääyksikkönormaalivektori funktiolle $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$
Aiheeseen liittyvät laskurit: Yksikkötangenttivektorilaskin, Yksikköbinormaalivektorilaskin
Syötteesi
Etsi pääyksikkönormaalivektori vektorille $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.
Ratkaisu
Pääyksikkönormaalivektorin löytämiseksi meidän on ensin laskettava yksikkötangenttivektorin $$$\mathbf{\vec{T}\left(t\right)}$$$ derivaatta ja sitten normalisoitava se (muodostettava yksikkövektori).
Löydä yksikkötangenttivektori: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (vaiheet: katso yksikkötangenttivektorin laskin).
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$ (vaiheista, katso derivointilaskin).
Etsi yksikkövektori: $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$ (vaiheittaiset ohjeet: katso yksikkövektorilaskin).
Vastaus
Päänormaalivektori on $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$A.