Funktion $$$-1 + e^{- x}$$$ integraali

Laskin löytää funktion $$$-1 + e^{- x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(-1 + e^{- x}\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(-1 + e^{- x}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{- x} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:

$$\int{e^{- x} d x} - {\color{red}{\int{1 d x}}} = \int{e^{- x} d x} - {\color{red}{x}}$$

Olkoon $$$u=- x$$$.

Tällöin $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.

Näin ollen,

$$- x + {\color{red}{\int{e^{- x} d x}}} = - x + {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = e^{u}$$$:

$$- x + {\color{red}{\int{\left(- e^{u}\right)d u}}} = - x + {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:

$$- x - {\color{red}{\int{e^{u} d u}}} = - x - {\color{red}{e^{u}}}$$

Muista, että $$$u=- x$$$:

$$- x - e^{{\color{red}{u}}} = - x - e^{{\color{red}{\left(- x\right)}}}$$

Näin ollen,

$$\int{\left(-1 + e^{- x}\right)d x} = - x - e^{- x}$$

Lisää integrointivakio:

$$\int{\left(-1 + e^{- x}\right)d x} = - x - e^{- x}+C$$

Vastaus

$$$\int \left(-1 + e^{- x}\right)\, dx = \left(- x - e^{- x}\right) + C$$$A


Please try a new game Rotatly