Funktion $$$\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx$$$.
Ratkaisu
Sovella potenssin alentamiskaavaa $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ käyttäen $$$\alpha=2 x$$$:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2}$$$:
$${\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2}$$
Integroi termi kerrallaan:
$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x} + \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$
Olkoon $$$u=2 x$$$.
Tällöin $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{2}$$$.
Siis,
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
Muista, että $$$u=2 x$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Kirjoita $$$\sin\left(2 x \right)\cos\left(4 x \right)$$$ uudelleen kaavaa $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ käyttäen, kun $$$\alpha=2 x$$$ ja $$$\beta=4 x$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = - \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}{2}\right)}}}{2}$$
Integroi termi kerrallaan:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(2 x \right)}}{2} d x} + \int{\frac{\sin{\left(6 x \right)}}{2} d x}\right)}}}{4}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(6 x \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(6 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(6 x \right)} d x}}{2}\right)}}}{4}$$
Olkoon $$$u=6 x$$$.
Tällöin $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{6}$$$.
Integraali muuttuu muotoon
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(6 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{6}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{6}\right)}}}{8}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{48}$$
Muista, että $$$u=6 x$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{\left(6 x\right)}} \right)}}{48}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{4}$$
Integraali $$$\int{\sin{\left(2 x \right)} d x}$$$ on jo laskettu:
$$\int{\sin{\left(2 x \right)} d x} = - \frac{\cos{\left(2 x \right)}}{2}$$
Näin ollen,
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(- \frac{\cos{\left(2 x \right)}}{2}\right)}}}{8}$$
Näin ollen,
$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}$$
Lisää integrointivakio:
$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}+C$$
Vastaus
$$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx = \left(- \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}\right) + C$$$A