Integralen av $$$\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx$$$.

Lösning

Använd potensreduceringsformeln $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ med $$$\alpha=2 x$$$:

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2}$$$:

$${\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2}$$

Integrera termvis:

$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x} + \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$

Låt $$$u=2 x$$$ vara.

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{2}$$$.

Alltså,

$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$

Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$

Kom ihåg att $$$u=2 x$$$:

$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$

Skriv om $$$\sin\left(2 x \right)\cos\left(4 x \right)$$$ med hjälp av formeln $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ med $$$\alpha=2 x$$$ och $$$\beta=4 x$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = - \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}{2}\right)}}}{2}$$

Integrera termvis:

$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(2 x \right)}}{2} d x} + \int{\frac{\sin{\left(6 x \right)}}{2} d x}\right)}}}{4}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(6 x \right)}$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(6 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(6 x \right)} d x}}{2}\right)}}}{4}$$

Låt $$$u=6 x$$$ vara.

$$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{6}$$$.

Integralen blir

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(6 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{6}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{6}\right)}}}{8}$$

Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{48}$$

Kom ihåg att $$$u=6 x$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{\left(6 x\right)}} \right)}}{48}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{4}$$

Integralen $$$\int{\sin{\left(2 x \right)} d x}$$$ har redan beräknats:

$$\int{\sin{\left(2 x \right)} d x} = - \frac{\cos{\left(2 x \right)}}{2}$$

Alltså,

$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(- \frac{\cos{\left(2 x \right)}}{2}\right)}}}{8}$$

Alltså,

$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}$$

Lägg till integrationskonstanten:

$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}+C$$

Svar

$$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx = \left(- \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}\right) + C$$$A


Please try a new game Rotatly