$$$\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx$$$。
解答
应用降幂公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,并令 $$$\alpha=2 x$$$:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(4 x \right)} + 1\right) \sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x} + \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
因此,
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
回忆一下 $$$u=2 x$$$:
$$\frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
使用公式 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$,取 $$$\alpha=2 x$$$ 和 $$$\beta=4 x$$$,将 $$$\sin\left(2 x \right)\cos\left(4 x \right)$$$ 重写:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos{\left(4 x \right)}}{2} d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = - \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(6 x \right)}}{4}\right)d x}}}}{2} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}{2}\right)}}}{2}$$
逐项积分:
$$- \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right)d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(2 x \right)}}{2} d x} + \int{\frac{\sin{\left(6 x \right)}}{2} d x}\right)}}}{4}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \sin{\left(6 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(6 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(6 x \right)} d x}}{2}\right)}}}{4}$$
设$$$u=6 x$$$。
则$$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (步骤见»),并有$$$dx = \frac{du}{6}$$$。
因此,
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(6 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8}$$
对 $$$c=\frac{1}{6}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{6} d u}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{6}\right)}}}{8}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{48}$$
回忆一下 $$$u=6 x$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{48} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}{4} - \frac{\cos{\left({\color{red}{\left(6 x\right)}} \right)}}{48}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{4} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{4}$$
积分 $$$\int{\sin{\left(2 x \right)} d x}$$$ 已经计算过:
$$\int{\sin{\left(2 x \right)} d x} = - \frac{\cos{\left(2 x \right)}}{2}$$
因此,
$$- \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{8} = - \frac{\cos{\left(2 x \right)}}{8} - \frac{\cos{\left(6 x \right)}}{48} - \frac{{\color{red}{\left(- \frac{\cos{\left(2 x \right)}}{2}\right)}}}{8}$$
因此,
$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}$$
加上积分常数:
$$\int{\frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}+C$$
答案
$$$\int \frac{\sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{2}\, dx = \left(- \frac{\cos{\left(2 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{48}\right) + C$$$A