Funktion $$$\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$.
Ratkaisu
Irrota yksi kosini ja kirjoita kaikki muu sinin termeinä, käyttäen kaavaa $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ siten, että $$$\alpha=x$$$:
$${\color{red}{\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}}$$
Olkoon $$$u=\sin{\left(x \right)}$$$.
Tällöin $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\cos{\left(x \right)} dx = du$$$.
Näin ollen,
$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}}$$
Expand the expression:
$${\color{red}{\int{u^{4} \left(1 - u^{2}\right) d u}}} = {\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(- u^{6} + u^{4}\right)d u}}} = {\color{red}{\left(\int{u^{4} d u} - \int{u^{6} d u}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=4$$$:
$$- \int{u^{6} d u} + {\color{red}{\int{u^{4} d u}}}=- \int{u^{6} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- \int{u^{6} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=6$$$:
$$\frac{u^{5}}{5} - {\color{red}{\int{u^{6} d u}}}=\frac{u^{5}}{5} - {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=\frac{u^{5}}{5} - {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$
Muista, että $$$u=\sin{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{5}}{5} - \frac{{\color{red}{u}}^{7}}{7} = \frac{{\color{red}{\sin{\left(x \right)}}}^{5}}{5} - \frac{{\color{red}{\sin{\left(x \right)}}}^{7}}{7}$$
Näin ollen,
$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}$$
Lisää integrointivakio:
$$\int{\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}+C$$
Vastaus
$$$\int \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}\right) + C$$$A